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The interplay between physical gelation and equilibrium phase transitions in asymmetric binary mixtures is
analyzed from the effective fluid approach, in which the big particles interact via a short-range effective
attraction beyond the core due to the depletion mechanism. The question of the universality of the scenario for
dynamical arrest is then addressed. The comparison of the phase diagrams of the hard-sphere mixture and the
Asakura-Oosawa models at various size ratios shows that strong specificity is observed for nonideal depletants.
In particular, equilibrium gelation, without the competition with fluid-fluid transition is possible in mixtures of
hard-sphere colloids. This is interpreted from the specificities of the effective potential, such as its oscillatory
behavior and its complex variation with the physical parameters. The consequences on the dynamical arrest
and the fluid-fluid transition are then investigated by considering in particular the role of the well at contact and
the first repulsive barrier. This is done for the actual effective potential in the hard-sphere mixture and for a
square well and shoulder model, which allows a separate discussion of the role of the different parameters, in
particular on the localization length and the escape time. This study is next extended to mixtures of “hard-
sphere-like” colloids with residual interactions. It confirms the trends relative to equilibrium gelation and
illustrates a diversity of the phase behavior well beyond the scenarios expected from simple models.
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I. INTRODUCTION

The question of gelation in colloids has attracted consid-
erable interest in the past decade, both for practical and fun-
damental reasons. Besides the presence of colloidal gels in a
variety of situations, from industrial processes to everyday
life, colloids provide indeed convenient model systems for
studying the glass transition, just as for the study of the equi-
librium phase transitions. This is due to the possibility to
tune to a certain extent the colloidal interactions �range,
strength, anisotropy, etc.� controlling their thermodynamic
properties. Concerning the dynamics, the extension to
Brownian particles of the theoretical framework developed
for molecular glasses has led to an original picture of the
dynamical arrest �1,2�: in addition to the ordinary “repulsive”
glass expected for fluids of hard particles �“caging” mecha-
nism�, colloidal suspensions can exhibit a transition to “at-
tractive” ones when short-range attractions exist between the
colloids �3–11� �see also �12,13� for a review�. In such at-
tractive glasses, the arrest is related to the existence of long-
lived reversible bonds between the particles, induced by the
effective attractions. Such reversible attractive glasses are
usually referred to, at lower density, as physical gels �13�.
Defined in a broad way, the short-range attractions respon-
sible for this exist in a number of colloidal suspensions con-
sidered from the effective one-component fluid point of
view, such as, for instance, in globular proteins �14,15�, col-
loidal silica �16�, or ideal polymer-colloid mixtures �5� �in
this last case, for example, their physical origin is the well-
known depletion effect�. Early mode coupling theory �MCT�
studies �3� have shown that fluids of attractive hard spheres
�HS� can exhibit gelation when the attraction range is short
enough in accord with experiment on various suspensions
�5,6,14,16,17�, and from a few years now, with numerical
simulations �8,9,18�.

An important question, both practical and fundamental,
emerged from these studies. It concerns the interplay be-
tween gelation and the equilibrium phase transition. More
specifically, as the effective attractions responsible for the
gelation are also involved in equilibrium phase transitions,
the possibility of observing physical gelation in the homog-
enous fluid phase, without an intervening phase separation,
has been questioned �13,18–20�. The relevant phase coexist-
ence is the fluid-fluid �FF� one since fluid-solid �FS� coexist-
ence can be suppressed in practice by a certain amount of
polydispersity. In a recent work we have proposed a new
perspective on this question �21�. We have shown that at
variance with some claims in the recent literature
�13,19,20,22�—at least from the point of view of the effec-
tive one-component system—several scenarios should be
considered in the answer. The usual view associating gela-
tion to fluid phase condensation is indeed based on a particu-
lar description of the effective interactions between the col-
loids. In this description, the effective potential is essentially
a hard-core repulsion plus a short-range attraction, with all
the other details being irrelevant. The conclusions obtained
from standard generic models, such as the square well �SW�
or the Yukawa potential, are then extrapolated to all the sus-
pensions in which an effective attraction exists �13� from
theoretical conjectures concerning laws of corresponding
states �23�. In this scheme, physical gelation would occur
only through an interrupted FF phase separation �hereafter,
this will be referred to as the generic scenario for physical
gelation�. This was deduced from numerical simulations per-
formed on the SW potential �13,18�, which showed that pre-
vious MCT results overestimated the domain of existence of
the nonergodic state. Recent experimental results seemed to
corroborate this view �15,20,22,24� although former studies
were compatible with the alternative one �6,25,26�. In �21�,
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we illustrated on the very simple example of a binary mix-
ture of hard spheres with different radii that the reduction in
the effective interaction to a hard-core repulsion plus a short-
range attraction can in fact be insufficient. Although—
roughly speaking—such mixtures belong to the same generic
category, the specificity of the HS effective potential is al-
ready sufficient to lead to a more complex scenario: beyond
the hard core, one finds a primary depletion well whose char-
acteristics �depth and width� depend on the physical param-
eters in a complex way. After this well, the potential is os-
cillatory at the scale of the smaller spheres, with the
repulsive barriers playing also a role in the phenomenon of
gelation. These features make possible, in some situations,
the onset of equilibrium gelation, contrarily to other experi-
mental situations �15,20,22,24�. Furthermore, as the FF tran-
sition can in turn be absent from the phase diagram, this even
rules out the question of its competition with gelation. This
shows that different scenarios can exist concerning gelation,
and therefore a fine analysis is required for determining the
appropriate modeling for each colloidal system.

In this paper we will extend this study in three main di-
rections. In Sec. III, we will study more completely the in-
fluence of the size ratio on the binodals and the nonergodic-
ity transition line of the HS mixture. A systematic
comparison with the Asakura-Oosawa �AO� model will be
made to assess the relative weights of the size asymmetry
and the more specific features of the effective interaction.
This will be helpful for determining the situations in which
one would likely observe equilibrium gelation, without the
competition of the fluid condensation. In Sec. IV, we will
analyze in more detail the role of the repulsive barriers ob-
served for nonideal depletants. We will use for this the flex-
ible square and shoulder potential, which mimics some char-
acteristics of the HS depletion potential and allows a separate
analysis of the influence of the depth and width of the attrac-
tive well or the width and height of the barrier. Finally, we
will examine in Sec. V mixtures of hard-sphere-like colloids
in which very short-range interactions beyond the hard core
are present, as this is likely in real mixtures. We will then

confirm the situations in which equilibrium gelation can be
expected experimentally. We will also illustrate on one ex-
ample the possibility of complex behavior as, for instance,
equilibrium gelation pre-empting both the FF and the FS
transitions, various re-entrant phenomena or solid-solid �SS�
transitions. This is followed by the general conclusion, with
the computational methods being described in the next sec-
tion.

II. METHODS

The methods we have used are detailed in our previous
work �21,27�. We briefly recall here the main steps. The bin-
odals and the nonergodicity transition lines are computed in
the effective one-component representation of a binary mix-
ture with big to small spheres diameter ratio q=�b /�s�1
and packing fractions ��s ,�b�. The thermodynamic variables
are then the packing fraction of the big particles �b, and that
of the small ones in the reservoir �s

� �also the temperature T
for non-HS interactions�. For hard particles without long-
range forces, the effective fluid approximation leads to quite
reasonable results �28–32� as far as the binodals are con-
cerned. The structure is also correctly reproduced for diam-
eters ratios down to q=3 �33�. The effective potential be-
tween the big particles is obtained from the infinite dilution
limit �b→0 of the pair distribution function �pdf� of the big
particles gbb �34,35�,

�ef f�r� = − kBT ln�gbb�r,�b → 0�� − ubb�r� , �1�

where u22 is the direct potential between the big spheres. We
used the reference hypernetted chain �RHNC� closure of
Lado et al. �36� of the Ornstein-Zernike equations for the
mixture with bridge functions deduced from Rosenfeld’s
density functional theory �37�. This method can be used also
for non-HS potentials �38�, including the very-short-range
attractions used here for describing mixture of HS-like par-
ticles �39�. For the Asakura-Oosawa mixture, the potential of
mean force at infinite dilution has the well-known exact ex-
pression �in unit of kBT� �40,41�,
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with �s
�= �6 /	�s

3��s
� the reduced solvent density in the reser-

voir. We also used the RHNC closure �with the bridge func-
tion of Malijevsky and Labik �42� for convenience� to com-
pute the static structure and the free energy of the effective
fluid. The free energy of the solid is computed from the
variational perturbation theory �VPT� using standard param-

eterization of the reference HS solid �43�. This method al-
lows for a quantitative description of the FF and the FS
transitions. This was shown in �30� where the binodals and
the free energy are compared to the Monte Carlo results of
�28� for q=5, 10 �Figs. 2, 4, and 6; see also �29,31��. The pdf
is also accurately reproduced with respect to numerical simu-

PH. GERMAIN AND S. AMOKRANE PHYSICAL REVIEW E 81, 011407 �2010�

011407-2



lations �see Fig. 1 of �30��. The VPT is less accurate for
describing the extended solid at high solvent density, and
thus a possible SS transition if the latter would exist in this
region �a stable SS transition is attested at high asymmetry
and relatively low �s

� �see �28� and below��. This point, how-
ever, is not central in our discussion.

The nonergodicity line is computed from the MCT �1�
�for the derivation for colloids, see Ref. �2��. The relevant
quantity is the density autocorrelation function whose long-
time limit fq characterizes the ergodicity of the fluid: fq�0
corresponds to the nonergodic or dynamically arrested state.
fq is the greatest solution, in the range 0
 fq
1, of the
equation �44�

fq

1 − fq
=

1

2
� d3k

�2	�3V�q,k�fkf �q−k�, �3�

where

V�q,k� = −
�b

q4 �q · �q − k�c�q−k� + q · kck�2SqSkS�q−k� �4�

with ck the static direct correlation function and Sk=1 / �1
−�bck� the static structure factor.

For one-component fluids, the MCT is known to describe
correctly the repulsive and the attractive glass transition of
the dense fluid �45–47�, although its predicts a lower packing
fraction at the glass transition than simulations ��=0.525
instead of �=0.58 in the second reference of �7��. Its main
limitation concerns the description of the low density fluid
���0.25�, where cluster aggregation is also observed �6,13�
and the situations for which the system is close to a FF
instability �this is the consequence of the approximate treat-
ment of the density fluctuations, which does not account for
such heterogeneities �3��. However, this should not invalidate
the main results of this paper since in most situations we
consider, such considerations are irrelevant. This concerns
especially our main results concerning the possible suppres-
sion of the gelation-FF transition competition induced by the
specificity of the effective potential. Another important as-
pect of the method is the choice of the static input Sk, as
discussed in Ref. �27�. It is also clear that simulations would
be useful to assess quantitatively the results for the dynami-
cal arrest obtained from the one-component mode coupling
theory. The validity of the effective fluid approach is indeed
then less established than for the static properties. There exist
only partial results for mixtures of soft particles �48�, or
comparison with simulations at low density of the small par-
ticles for AO mixtures �49�, and theoretical arguments like
the adiabadicity criterion �50�. The underlying view is that
the fluid of small particles remains ergodic in the free vol-
ume left by the big ones, which seems to be a reasonable
approximation for the situations investigated in this paper,
that is, hard particles and �s

�
0.4. Quantitatively, however,
an extension of the nonergodicity domain cannot be excluded
in certain circumstances, with the gelation involving also the
small particles. This was indeed observed by Imhof and
Dhont �51� for a mixture of hard-sphere-like particles for the
higher values of �s

�, and it may be expected, for example,
when additional attractions are present. In any case, this wid-
ening of the nonergodicity domain would just reinforce our
conclusions concerning the possible existence of equilibrium
gels in asymmetric mixtures. It should be stressed that the
dynamical arrest has been characterized in the recent litera-
ture by other methods, such as the bond correlation �52� or
percolation �53�. It is unclear how the arrest lines estimated
in this way correlate with the one determined from the den-
sity autocorrelation function, central to this MCT treatment.

III. MIXTURES OF HARD PARTICLES

A. Results

In order to possibly draw general trends, we collect in
Figs. 1–3 the phase diagrams of the HS and the AO mixtures
�21,27� in the effective fluid approach, at different size ratios.
Two situations may indeed be distinguished: highly asym-
metric mixtures �q�10� and moderately asymmetric ones
�typically q=4,5�. For q=12.5 and 10, the phase diagrams of
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FIG. 1. �Color online� Phase diagram of the �a� Asakura-
Oosawa and �b� hard-sphere mixture models for q=12.5 in the ef-
fective fluid representation. Solid lines: binodals; dashes: nonergod-
icity transition lines.
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the HS and the AO mixture are quite similar. We indeed
observe �1� a wide FS coexistence domain which confines
the homogenous fluid phase to the low solvent density re-
gion, �s

�0.2–0.3; �2� a metastable FF binodal which also is
very flat; and �3� the glass transition line pre-empting the FF
one, at least according to this MCT approach. In both mod-
els, the nonergodicity domain expands toward lower packing
fractions of the big particles �b upon increasing the density
of the small ones, beyond �s

�0.1. This is associated with
the transition to the attractive glass, as evidenced by the
analysis of the nonergodicity factor fq �see Sec. IV�. As em-
phasized previously, the meaning of the MCT line at very
low �b needs to be clarified, as dynamical heterogeneities are
not accounted for in the MCT which considers only homog-
enous gelation. The closeness of the FF critical point �at least
for the AO model� should also be considered. Although these
restrictions may be important in practice, they should not
invalidate our analysis, which shows similar properties be-
tween the two models at large asymmetry. These similarities
found within the same theoretical framework are indeed as-
sociated with the high asymmetry, as also substantiated by
comparison with the lower asymmetry regime. Here, the
unique qualitative difference is the existence, in a very nar-
row range of solvent densities, of a stable SS transition for
the HS mixture model. More quantitatively, one also ob-
serves that the FF occurs at higher �s

� for �HS
ef f than for �AO.

For q=4, 5 the phase diagrams of the two models differ
qualitatively. Besides the freezing line �less flat with �HS

ef f�,
the most striking deviations concern the FF transition and the
glassy states: the FF binodal is absent for �HS

ef f �it appears
only for q�8�, while it is systematically observed in the AO
mixture �it is stable with respect to the FS one for q
2.5
�54,55��. Concerning the glassy state, it is confined to the
dense liquid region ��b�0.5� with �AO, while it is observed
at relatively at low density with �HS

ef f. For the latter, “gela-
tion” occurs at �g=0.32 for �s

�=0.8 and q=5, and �g=0.18
for q=8 �still for �s

�=0.8�. In a recent numerical simulation

�52�, the dynamical arrest was studied for the AO potential
with q−1=0.15 from the bond correlation function. At this
size ratio arrest is observed at low packing fraction, but the
location of the glass transition line was not computed.

For moderately asymmetric mixtures, the phase behavior
observed with �HS

ef f departs clearly from the generic scenario.
One may then wonder whether a different representation
would restore a common behavior. To check this we have
considered the standard B2 representation based on an as-
sumed validity of certain laws of corresponding states. Ac-
cording to these laws the only relevant measure of the inter-
action strength would be the reduced second virial
coefficient B2

r = �1 /B2
HS��d3r�1−exp�−���r���. This was

shown for the binodals in �23� for potentials having widely
different ranges of attractive interactions, but the authors al-
ready indicated that discrepancies could be observed for
more complex effective potentials such as those involving
barriers. It was next suggested in �18� from simulations that
the law of corresponding states could also hold for the dy-
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FIG. 2. Phase diagram of the HS mixture for q=10. Solid lines:
binodals; dashes: nonergodicity transition lines.
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dots in �b� are the nonergodicity transition line for q=8 �note that
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namics �13�. We thus computed the MCT arrest line and the
critical points in the plane �� ,B2

r� for some of the situations
considered above �Fig. 4� for the potentials �AO, �HS

ef f, and its
truncated version ���x
1+att

� �=�HS
ef f�x� and ���x�1

+att
� �=0 �discussed in Sec. IV�. The corresponding transi-

tion lines differ strongly: while it is almost vertical for
�AO�q=5�, �g decreases rapidly with B2

r for �HS
ef f. These re-

sults show that, contrarily to the AO mixture, the HS one
does not follow a universal trend even when a global mea-
sure of the interaction is used. This also holds for the critical
points. In the inset, the comparisons shown for q=5 and 12.5
confirm the role of the size asymmetry.

B. Analysis

1. Generic and specific behaviors

To understand these results, one may compare the deple-
tion potentials in the two models in relation with their unique
difference: in the AO model, the interaction between the
small particles is ignored �ideal depletant� while it is a hard
sphere one in the HS mixture. A distinction between univer-
sal and specific features can be made by noting first that, in
the AO model, the effective potential can be written as
�AO=�s

��q�x� with �q independent of �s
� �Eq. �2��. The

“charging” parameter playing the role of the inverse tem-
perature is �s

� and the attraction range �=1 /q �in reduced
units� is independent of �s

�. In this case, the generic scenario
is expected. In the HS mixture, on the contrary, the effective
potential departs from this behavior: when �s

� increases, �HS
ef f

becomes strongly oscillatory with separation �Fig. 5�, a con-
sequence of the nonvanishing radius of the small spheres.
These well-known oscillations with a periodicity roughly

equal to the small spheres diameter reflect increasing short-
range correlations between the small particles. The behavior
of �HS

ef f is thus more complex than that described above; in
particular, the decoupling between the depth and the width of
the attractive well does not hold. Two main features are ob-
served: first, the depletion well close to contact narrows as �s

�

increases, for fixed q. Simultaneously, a repulsive barrier de-
velops next to this well, for separations �in units of �b� att

�


d�
att
� +rep

� �the other barriers are less important�. Since
one has roughly att

� +rep
� 1 /q, the increase in �s

� decreases
att

� and increases rep
� . In addition, the amplitude �rep of the

repulsive barrier increases, too.
The variation of these parameters is illustrated in the in-

set, using the HS depletion potential derived by Götzelmann
et al. �56� �see Ref. �27��. When �s

� increases, �rep becomes
comparable to �att so that the energy barrier �tot=�rep+�att a
particle has to cross to escape from the contact well is sig-
nificantly greater than �att. For q=5 and �s

�=0.4, for ex-
ample, one has �tot6kT, �att3.9kT, and �AO=3.6kT. The
variation �inset� of att

� and rep
� shows that the width att

� of
the depletion well becomes significantly smaller than 1 /q for
�s

��0.2 �recall that AO
� =1 /q�.

However, this solvent granularity is expected to play a
more important role at moderate asymmetry than at very
high q �in which case the very narrow and deep well at
contact dominates�. This explains the following trends:

�i� at high asymmetry the binodals of both models are
close to those for very small attraction range �q�10�: meta-
stable FF transition and coexistence between a low density
gas maximizing the entropy and a close-packed solid maxi-
mizing the attraction energy. The attractive glass extends to
the low density region due to physical bonding �3,6�. How-
ever, besides these generic properties, some influence of the
granularity of the solvent remains with �HS

ef f as mentioned
previously �in particular, the location of the FF binodal with
respect to the FS and the MCT transition lines and the solid-
solid transition�.
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�ii� for the AO model with moderate asymmetry, the phase
diagram observed in Fig. 3�a� follows also the generic be-
havior: a FF transition, unstable with respect to the FS one
when the attraction range is below some critical value �qc

−1

0.40 for the AO potential �54,55� and �c
�−10.15 for the

Yukawa potential, with ��−1 as the reduced range �57��. The
attractive glass is confined to the dense fluid region. Addi-
tionally the binodals are also less flat.

�iii� in HS mixtures with moderate asymmetry, the speci-
ficity is manifest. This can be traced back to the quite dis-
tinctive features described above, as analyzed now.

2. Moderate asymmetry: Roles of the repulsive barrier and of
the attractive well

For checking the influence of the repulsive barrier, we
computed the phase diagram for the truncated potential
���x
1+att

� �=�HS
ef f�x� and ���x�1+att

� �=0 �Fig. 6�. As
with �HS

ef f�x�, no FF binodal was observed with �� for q=4
and 5, suggesting that the repulsive barrier has a weak influ-
ence on this transition. Both for �� and �HS

ef f, the FF transi-
tion for q
8 is absent because the increase in �att with �s

� is
offset by the rapid decrease in att

� , contrarily to �AO for
which the width is fixed. On the contrary, the barrier is im-
portant for the glass transition, as shown �AO; HS; ��� in
Fig.6. As suggested above, one may anticipate that the bar-
rier stabilizes the physical bonds involved in gelation. The
simultaneous decrease in att

� with �s
� reinforces this mecha-

nism �see Secs. IV B and IV C below�. The analysis of the
B2 representation shown in Fig. 4 confirms the role of the
repulsive barrier distinguishing �HS

ef f from ��. Indeed,
whereas the attractive well and the barrier both favor gela-
tion, their contributions to B2 are of opposite sign. However,
the difference observed between �� and �AO shows that the
shape of the attractive tail also matters. This shows that non-
ideal solvent means also nonuniversal features. In this re-
spect it should be stressed that different models may turn out
more or less suitable to describe different colloidal systems.
For instance, the AO-like models without repulsive barriers
should be appropriate to globular proteins or polymer-colloid
mixtures

whereas the oscillatory depletion potential is expected to cor-
respond more to mixture of hard-sphere-like colloids.

IV. SQUARE WELL AND SHOULDER POTENTIAL

As discussed in the previous section, the features of the
effective potentials such as the depth at contact, the ampli-
tude of the oscillations, etc.—which are responsible for the
departure from the generic scenario—change in a complex
way with the “control” variables, q and �s

�. In order to dis-
tinguish between the different effects, we consider here the
“square well and shoulder” potential ��SWS�, in which these
features can be varied separately. The relevant parameters are
defined in Fig. 7.

A. Gelation versus fluid-fluid transition

The FF critical point and the glass transition line were
computed in the �� ,T�� plane �with � the packing fraction
and T� the reduced temperature kT /�att� for various values of
att

� �width of the attractive well� and of rep
� �width of the

shoulder� and of the ratio �rep /�att �hereafter, the lengths are
in units of  and the energies are in units of kBT�. Although
�SWS may only grossly mimic the actual effective potential,
we have considered some values typical of this potential for
the asymmetry range considered here: for example, the
widths att

� =0.03, 0.06, and 0.1 and rep
� =2.33att

� correspond
roughly to those found for �s

�0.35 and q10, 5, 3, respec-
tively. The variation with att

� and rep
� is first presented in

Fig. 8 for att
� =0.03, 0.1, and in each case, rep

� =0, att
� ,

2.33att
� �rep

� =0: SW potential�. In all these figures
�rep /�att=1 for simplicity. The influence of �rep /�att is next
illustrated in the inset for rep

� =att
� =0.1. For att

� =0.1 the
MCT line cannot be computed at large �att

� because the non-
convergence region of the RHNC equation then precludes
the computation of the static structure factor.

Considering first the case rep
� =0, one recovers the pattern

obtained for the SW or other similar short-range potentials
�3,4,11�: decreasing the attraction range favors equilibrium
gelation, in the MTC treatment, by pushing the critical point
toward higher values of �att

� . As shown in the inset of Fig.
8�a�, for att

� =0.03, our MCT results are very close to those
obtained by Foffi et al. in �58�. These situations are precisely
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those for which the MCT results have been questioned on the
basis of subsequent molecular-dynamics simulations �18�.

The addition of a repulsive barrier favors then systemati-
cally gelation at lower density and pushes simultaneously the
critical point at higher �att

� . However, these effects have quite
different amplitudes according to att

� and the considered
transition. �i� The displacement of the critical point is weaker
than that of the glass transition line. This confirms the trends
observed for the HS effective potential. �ii� The effect of the
repulsive barrier is the strongest when the attraction range is
not too small. For att

� =0.03, indeed, the location of the criti-
cal point is almost unaffected by the repulsive barrier, even
when rep

� =att
� , and the MCT line is only moderately shifted

�low density gelation is in turn observed regardless of the
presence of the barrier�. At the attraction width, att

� =0.1, the

phase behavior is qualitatively modified by the introduction
of the repulsive barrier: low density gelation is indeed ob-
served only when it is present. Furthermore, the location of
the MCT line is sensitive to its width. In accordance with the
rough correspondence made above between �SWS and �HS

ef f,
these features are consistent with the behavior observed for
the actual depletion potential, for which two situations have
also been evidenced, depending on the size ratio. One recov-
ers also the differences between the MCT lines computed for
�HS

ef f and the truncated potential �� for q=5. The principal
difference is however that a critical point is always present
for �SWS since the range and the charging parameter are then
independent. Like for rep

� , the effect of increasing the repul-
sive energy �rep

� �for fixed values of rep
� and att

� � is also to
shift the nonergodicity line toward lower densities �inset of
Fig. 8�b��. The critical point is not modified. Finally, we have
also computed the nonergodicity transition lines in the
�� ,B2� plane: they do not follow a universal behavior, like
for �HS

ef f.

B. Localization length

The transition from a repulsive to an attractive glass can
be identified from the changes observed in the long-time
limit of the density autocorrelation function fq or alterna-
tively in the self-particle-contribution fq

s �3�. It leads to a
strong decrease in the particle localization length rloc, which
is usually interpreted as the consequence of the formation of
bonds between the particles due to the attractive forces. The
contribution of the repulsive barriers to bonding was then
checked in �21�, by comparing the variations of rloc associ-
ated with �HS

ef f and with its truncated version ��. However,
rloc was computed for these two potentials along there re-
spective line of arrest. For more evocative comparisons, rloc
is computed here for different SWS potentials at the same
points of the phase diagram. We compare in this way the
localization radii corresponding to �SWS with the same at-
tractive part but different repulsive barriers, along the MCT
line computed for the pure SW, �rep

� =0 �Fig. 9�. This is done
for att

� =0.1, in the simplest Gaussian approximation �10�.
The effect on rloc of the repulsive barrier is clearly evi-
denced: in the attractive glass observed for �att

� �05, the
value rloc is almost divided by 2 for �rep

� =�att
� and att

�

=0.23 �which would correspond roughly to �s
�0.35 for

�HS
ef f�. We note that the variation with the physical parameters

is nonlinear since it seems to saturate at large �rep
� and rep

� ,
and that these two parameters play a similar role.

C. Escape time at infinite dilution

Additional insight on the stabilizing effect of a repulsive
barrier on the bonding mechanism involved in gelation is
provided by the time �esc for a Brownian particle to escape
from the potential �the particle being located initially at the
potential-energy minimum�. From this definition, �esc can be
regarded as the bond lifetime between two interacting par-
ticles in the dilute fluid regime. It should of course not be
confused with the bond lifetime in the gel state since the
latter depends also on the dynamical correlations with the
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other particles. However, one may expect similar effects of
the attraction and repulsion parameters on these different
times, at least qualitatively. The escape time �esc can be com-
puted from Kramer’s expression �59� for a potential having
the characteristics of those investigated here: a deep well and
a repulsive barrier between the well and the free particle
region, both having a characteristic energy greater than kBT
�this is different from the considerations on the Asakura-
Oosawa potential in �60��. From these assumptions, �esc
writes

�esc =
1

D0
�

0

att+rep

dx� e��SWS�x���
−�

x�
dx e��SWS�x�, �5�

which leads to the following expression for the SWS poten-
tial:

�esc =
1

D0
��att + rep�2 + attrep�e�att

� +�rep
�

− 1�� . �6�

In Eq. �6�, D0 is the free particle diffusion coefficient �in the
absence of hydrodynamic interactions�. This expression is
qualitatively consistent with the stabilizing effect of rep

� and
�rep

� on the gel transition line and the particle localization as
measured by rloc. Concerning �esc, this can be understood
from considerations on the probabilities for the Brownian
particle to overcome the energy barrier �att

� +�rep
� �which is

enhanced by �rep
� �, and next jump across the barrier width

rep
� without coming back in the well �a similar expression

can be found in �61�. However, it is difficult to make a more
precise correlation: for example, the simple behavior in
��att

� +�rep
� � obtained for �esc does not hold for the gel prop-

erties �compare, e.g., in the inset of Fig. 8�b� the gel transi-
tion packing fractions for ��att

� ,�rep
� �= �2,1� and �1.5,1.5��.

Also the influence of rep
� , with respect to that of �rep

� , is
weaker for �esc than for the gel properties �replacing the pair

potential with the mean force one −kT ln�g�r�� at finite den-
sity does not seem to restore the influence of rep

� �.

V. MIXTURES OF HARD-SPHERE-LIKE COLLOIDS

To deepen this question of specificity, in relation with a
finer description of the interactions, we finally consider bi-
nary mixtures of hard particles, with residual direct interac-
tions between the particles. This will give an idea of the
scenarios one may actually observe with real mixtures. As
well known, the HS model is used when the actual potentials
vary on a very short range with respect the size of the par-
ticles and is weak beyond the steep repulsion �“HS-like par-
ticles”�. While this modeling has proven reasonable for
monodisperse suspensions �see, e.g., �62–65�.�, it is more
disputable for pseudobinary mixtures. In �39� we have shown
indeed that the incorporation of moderate attractions with
very short range, at the scale of the small colloids, can
modify the binodals at the qualitative level, for q=10 �this is
different from the situations discussed in Sec. III B 1 in
which only hard-sphere interactions were present�. Using the
HS mixture as a reference system for highly asymmetric
mixture may thus also be questioned �66�. We thus include in
this section the effect of similar residual interactions on the
nonergodicity transition lines of mixtures of HS-like par-
ticles for q=5 and 10. In both cases, the residual interaction
is a Yukawa attraction between unlike particles,

�usb�r � �sb� =
��

r/�sb
exp�−

��sb − r�
�sb

� , �7�

where �sb= ��s+�b� /2 and �s,b is the small �big� particle
diameter. We take ����=1.5, and the range �sb is chosen so
that the interaction is truly “residual:” �sb /�s= � 1

100 , 1
40�. This

corresponds to a relative deviation �Bsb
�2�= �Bsb

�2�

−Bsb,HS
�2� � /Bsb,HS

�2� of the second virial coefficient �Bsb
�2�=

−1.3% to −3.1% for q=10, for example �see Ref. �39� for
details�.

We recall that for q�5, ��= �1.5, and �sb=�s /100, we
found �21� that gelation occurs without the competition with
the FF transition, both for the pure HS mixture and that with
residual interactions �Fig. 10�. The effect of the residual in-
teraction is indeed observable only on the MCT line, and it is
weaker in this case than for q=10 and the same value of
�sb /�s �inset�. Since this model seems closer to reality, one
may expect equilibrium gelation in a significant number of
mixtures of HS-like particles with similar size ratios.

We finally present the phase diagram of a mixture with
q=10, ��=−1.5, and �sb=�s /40 ��Bsb

�2�=−3.1%�, as an illus-
trative example of the variety of possible behaviors �Fig. 11�.
The noteworthy features are no FF binodal, spectacular ex-
tension of the homogenous fluid phase, re-entrance of the
crytallization line, nonergodic fluid out of the FS coexistence
domain, widening of the FS coexistence domain at higher
density of small particles, and isostructural SS transition.
These properties are of course related to the specificities of
the effective potential �inset� in this situation. Concerning the
binodals, the principal cause is the strong reduction in the
depletion well at contact, �ef f��b�, induced by the residual
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attractions �see the inset�. Due to the correlations between
the small particles, �ef f��b� varies in a nonmonotonic way
with �s

�. This leads to a re-entrant behavior. The widening of
the FS coexistence domain at higher small particle density,
together with the SS transition, is then associated with the
deepening of a second minimum in the potential at r=�b
+�s, with the big-small sphere attraction bridging the big
particles.

Concerning the nonergodicity transition, the reduction in
the depth of the depletion well with respect to �HS

ef f proves
less influential than for the crystallization line: in particular
no re-entrance is observed even when ��ef f��b�� decreases
with �s

�, due to the simultaneous increase in the height of the
repulsive barrier. Although one cannot ascertain that this par-
ticular pattern will actually be observed due to the great sen-
sitivity, at high asymmetry, of the transition lines to other
details of the interactions, this example illustrates the possi-
bility of specific behaviors, well beyond the generic scenario.

VI. CONCLUSION

We have analyzed the interplay between gelation and
equilibrium phase transitions in asymmetric mixtures of
hard-sphere-like colloids, in the effective one-component ap-
proximation. In this representation, the big particles interact
through a short-range effective interaction, which is medi-
ated by the small spheres. One main feature of the effective
potential in hard-sphere mixtures is the presence of an attrac-
tive part in a narrow range close to contact, such as in
colloid-polymer ones or other suspensions. This is expected
to favor the onset of attractive glasses or gels whose inter-
play with the equilibrium fluid condensation is the subject of

vivid debates. We have analyzed for these mixtures the va-
lidity of the generic scenario drawn from standard potentials
composed of a hard core plus a short-range effective attrac-
tion, according to which gelation is related to fluid-fluid
phase separation. We have shown that contrarily to the
Asakura-Oosawa potential, which assumes an ideal deplet-
ant, strong specificities are associated with the nonzero cor-
relations between the smaller particles in actual pseudobin-
ary mixtures. This is related to the fine structure of the
oscillatory effective potential whose variations with the
physical parameters are much more complex than for stan-
dard potentials. These specificities of the effective potential
influence differently the FF and the nonergodicity transition
line. As the principal consequence, we predict equilibrium
gelation without the competition with the fluid-fluid transi-
tion in mixtures of hard-sphere-like colloids with moderate
size ratios �typically q�4–8�. It will be observed provided
that crystallization is inhibited by a sufficient degree of poly-
dispersity. We have also shown that, at higher asymmetry, the
residual non-hard-sphere interactions—which exist in real
mixtures of hard-sphere-like particles—can strongly modify
the phase diagram with respect to the pure HS situation. This
leads to a rich variety of behaviors, well beyond the generic
scenario, according to the details of the interactions between
the components of the mixture. Since such details may be
important, it might be necessary to assess the different mod-
eling steps leading to the effective one-component represen-
tation. A possible comparison with measured effective
potentials—for the same state points used to draw the phase
diagram—would hence be useful. These observations should
stimulate further experimental investigations on these sys-
tems. In the future, numerical simulations should also be
useful to quantify more precisely the qualitative trends dis-
cussed in this paper. Work is in progress in this direction.
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